
Abstract 

Introduction 
Many diseases require careful examination of histopathological material as part of the diagnostic 

process, so that patients can receive proper treatment. This is especially valid for almost all forms of 

human cancer, where discovering the disease in a very early stage of its development is crucial for the 

success of its treatment. This leads to the need to take biopsy materials for examination early in the 

disease progression, when the signals are still weak and difficult to detect. However, if the cancer is 

diagnosed in an early stage, its treatment is most likely to be successful, less invasive and more efficient 

overall. 

There are new technology achievements allowing automation in preprocessing, slicing and digitally 

scanning of tissue examples, moving the action from the world of microscopes to the world of digital 

medicine. However, this doesn’t significantly reduce the volume of work for histopathologists, as they 

still need to manually examine all slices and determine a potential problem and what its severity is. 

On the other hand, while the volume of work is steadily increasing, the number of well-trained experts in 

histopathology remains the same. 

This is where projects like ExaMode1 can help. The purpose of ExaMode is to evaluate and classify the 

input information about a specific clinical case (histopathological slide images, the patient’s health 

record, a synopsis from similar cases from the current clinical practice and from literature) in order to 

automatically decide the presence of specific malignancy and its severity level. The project will achieve  

that by using collected information from big volumes of scientific publications and clinical cases and 

applying the latest artificial intelligence (AI) state of the art achievements as well as developing new 

ones. 

There are three data flows that need to be examined: 

● histopathological images; 

● clinical case synopses; 

● other patients related data like age, gender, blood pressure, blood marker results and whatever 

else information is collected from the hospital medical system and is relevant to the possible 

interpretation of data and estimation about the user profile. 

One of the project objectives is to develop prototypes for image annotations and semantic normalization 

of textual content from medical reports and scientific publications. The exploitation strategy of the 

project envisions that, based on the algorithms and prototypes developed in the project, a holistic 

solution integrating multimodal histopathology data can be built. This solution would support users 

(histopathologists) when making more informed decisions based on a larger amount of data (judging 

from similarity to other cases in their clinical practice or the identified likelihood in scientific literature).  

A prioritization of cases is considered, so that the cases with higher severity and likelihood of specific 

 
1 EXtreme-scale Analytics via Multimodal Ontology Discovery & Enhancement https://www.examode.eu/ 



diseases will be presented for confirmation first, and the cases with smallеr likelihood – later, when 

there is enough time. 

A consortium between 7 parties was established – two hospitals, two universities and three 

technological companies/organizations. 

The hospitals are the two key stakeholders defining the specific requirements for the digital 

histopathology workflows and also providing valuable data samples, annotations, etc.: 

● Cannizzaro Hospital in Catania; 

● Radboud University Medical Center. 

 

The universities are: 

● HAUTE ECOLE SPECIALISEE DE SUISSE OCCIDENTALE, Switzerland (HESSO) – with research and 

development on visual knowledge extraction algorithms and models; 

● University of Padova – with research on medical ontologies and semantic mapping between 

different life-science ontologies and multilingual NLP pipeline for extraction of semantic 

categories from texts – synopses, diagnoses, etc. 

The technological companies are: 

● Microscope IT - with expertise in image processing and visualization, which job is the 

development of prototypes for image annotations and evaluation of images from literature and 

clinical cases; 

● Sirma AI, trading as Ontotext - with expertise in semantic data modelling and processing, which 

job is creating a Semantic Data Knowledge Management System as a prototype in two versions 

as well as providing text analysis, NLP, semantic transformations, storage and semantic 

searches upon stored data; 

● SURF Sara - providing super-computer environment and support for training ML models, storing 

data and real-time environment for the prototypes. 

Architecture of the solution 
The Semantic Data Knowledge Management System (SDKMS) is the software part, responsible for data 

transformation in semantic knowledge graphs so that the semantics of different models and data from 

the different sources can be unified and processed in a holistic way.  

A high level architecture diagram of the whole system and the interactions of its parts could be found in 

Figure 1. 

Virtum prototypes store the metadata coming from the analysis of histopathological images to that drive 

and the files are read by the SDKMS and ingested to the semantic storage - more specifically, to the 

knowledge graph about the clinical case. After that, the data relevant to a specific clinical case, could be 

queried by the search services as similarity or faceted search.



Figure 1 Context diagram of the ExaMode project 
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Figure 2 Context diagram of the SDKMS 

There are two versions of the SDKMS planned in the scope of the ExaMode project. The first one, which 

is delivered at the time of writing this document, contains several modules, most of which will be 

included in the second version. The first version features a text analysis pipeline as part of the ETL 



RDFization workflow, which is based on the ExaMode ontology schema developed by the University of 

Padova. The pipeline covers only one of the topics in the scope of the project (colon cancer) and will be 

extended to cover the remaining 3 topics. 

The second version of the prototype is planned to have its own user interface module and to provide 

faceted search and more sophisticated algorithms for similarity search. 

The high level architecture of the SDKMS is presented in Figure 2. 

The boxes are colour-coded – the orange boxes show what is already implemented in the first version, 

while the green ones - what is planned to be included in the final version of the prototype.  

Components used in the first version of the SDKMS 

Semantic storage 
This component is a bundle of software (GraphDB) and data in the form of stored knowledge graphs. 

While the first is an of-the-shelf component, providing storage and reasoning functionality as well as 

some convenient tools for data processing, the second element, the data, is specific for each topic. It is 

built using domain specific ontologies aligned with the ExaMode semantic model and aims to normalize 

the textual and visual information for each different case report. 

Knowledge graphs in terms of GraphDB 
There are plenty of definitions of knowledge graphs with small variations. We will use the definition of 

Aidan Hogan et al2, which combines all of the common assumptions. According to it, the knowledge 

graph is “a graph of data intended to accumulate and convey knowledge of the real world, whose nodes 

represent entities of interest and whose edges represent relations between these entities. The graph of 

data (aka data graph) conforms to a graph-based data model, which may be a directed edge-labelled 

graph, a property graph, etc. By knowledge, we refer to something that is known . Such knowledge may 

be accumulated from external sources, or extracted from the knowledge graph itself. Knowledge may be 

composed of simple statements, such as “Santiago is the capital of Chile”, or quantified statements, such 

as “all capitals are cities”. Simple statements can be accumulated as edges in the data graph. If the 

knowledge graph intends to accumulate quantified statements, a more expressive way to represent 

knowledge – such as ontologies or rules – is required.“ 

The purpose is the extraction of data semantics, allowing experts of (big) companies, scientists, 

journalists, etc. and also the software to manage huge volumes of not-so-structured data and to access 

the needed information. 

GraphDB stores knowledge graphs as sets of RDF triples, where the starting node is the subject, the arc is 

the property and the ending object (or literal) is the value of the triple.  

Usually, knowledge graphs are built on top of some existing structured data, extracted from a database 

(set of databases), which is interconnected with other semi-structured data (like texts) or completely 

unstructured data (like images or videos) and connected to standard external ontologies (like FOAF, 

GeoNames, etc.) for interoperability purposes. 

 
2 https://arxiv.org/pdf/2003.02320.pdf 



If one considers relational database table rows as objects, their columns (fields) as object properties (or 

predicates), the table contents could be mapped to RDF-triples as <object, predicate, value>, where the 

values represent the column value for the specific table row. The external links to other tables are 

represented by placing the objects of the referred table as the values of the triples. This way the 

relational databases data is mapped to RDF. Moreover, there is no need for all the table fields to have 

their values – instead, there will be no such triple in the resulting RDF. 

However, in order for the above to be a knowledge graph, it must also be easily connectible to common 

linked open data (LOD) repositories so that a compatibility with the other data sources can be achieved. 

One of the possible ways to transform relational data is by using commonly known ontologies and their 

property types as properties for the triples. Another way is by defining mappings and transitional steps 

from the terms of the specified domain to the LOD. 

The common approach for including text in knowledge graphs is by using NLP for detecting semantic 

categories and their interactions, forming sets of triples and then ingesting them to the semantic 

storage, together with the original text. There are usually lateral text or JSON storages in addition to the 

semantic storage. 

Images are included in the knowledge graph by extracting metadata from them (by reading their header 

fields), but mainly by applying AI algorithms for image processing, segmentation, object detection, etc. 

Then, the extracted image metadata is generalized and transformed to a set of RDF triples, which are 

further ingested in the semantic storage. 

Current ExaMode knowledge graph 
Knowledge graphs contain two main components: 

● Core ontologies, describing the domain. In the context of the ExaMode project, they are life 

science and medical ontologies. They are combined in a so-called Annotation Schema, which 

provides a consistent format for extracted information during the project components execution 

and references to LOD. Additionally, as per the project design, a set of extracted scientific 

articles will be processed using the developed NLP and image processing algorithms and the 

results will be stored in the knowledge graph. This will allow searching for them and accessing 

them in the context of a specific clinical case, based on the calculated similarity and faceted 

search algorithms. 

● Collected and transformed data about clinical cases, containing information from the electronic 

health record (EHR) of a specific patient, histopathological images extracted metadata and the 

physician’s conclusion – synopsis. All these data will be represented as a subgraph by means of 

the annotation scheme from the previous item. 

Currently, the knowledge graph of the project contains RDF-triples about the following ontologies: 

● Unified Medical Language System (UMLS) semantic network3;  

● SNOMED CT4 – ontology for description of diseases, drugs and EHR; 

● PathLex5 - anatomic pathology lexicon; 

 
3 https://www.nlm.nih.gov/research/umls/index.html 
4 http://www.snomed.org/ 
5 https://bioportal.bioontology.org/ontologies/PATHLEX 

https://www.nlm.nih.gov/research/umls/index.html
http://www.snomed.org/
https://bioportal.bioontology.org/ontologies/PATHLEX


● Thesaurus of Prostate Cancer related categories; 

● ICD-0-3-T6 - international classification of diseases; 

● BCGO7 - beta cells genomics ontology; 

● Mondo Diseases Ontology8; 

● University of Padova specific ontology for annotating texts from publications; 

● Association for Occupational and Environmental Clinics (AOEC) Colon Cancer ontology. 

A GraphDB entry point with the installed knowledge graph in its current state can be found on 

https://examode.ontotext.com/.  

One is able to browse data, execute SPARQL queries and use all the installed GraphDB Workbench 

functionality. The examode repository must be selected from the top right selection list. 

There are more than 132 million RDF triples currently loaded, of which 80 million are explicit and the 

other 52 million are inferred. 

If one follows the above link and clicks Explore -> Class Hierarchy from the tab in the left pane, it can be 

seen that the knowledge graph currently contains more than 77 K classes with millions of links between 

them (see Figure 3). 

Further activities are planned in the following directions: 

● Enrichment of the knowledge graph by adding specialized ontologies about the rest of the 

diseases in the project’s focus: breast cancer, lungs cancer, etc. 

● Increase of interconnections between different subgraphs by increasing the number of mappings 

between the included ontologies, using sameAs or subClassOf predicates. 

● Adding multilingual labels. 

The Workbench 
The user interface provided on http://examode.ontotext.com is included in the GraphDB distribution and 

is known as GraphDB Workbench. It is used in the first version of the SDKMS for data entry, queries and 

visualization purposes. 

Although the Workbench is quite powerful and offers general purpose functionality, its use as a UI for 

the project is limited by the need for users to be familiar with the semantic knowledge domain and to be 

trained to think in terms of RDF, write/modify SPARQL queries and to interpret the extracted results. 

Even using predefined queries requires their adoption for specific data to be included as VALUE clauses. 

Keeping in mind that the users of the SDKMS are doctors, it is not expected of them to be experts in the 

field of semantic knowledge and ontologies. So there is a specialized UI planned for the development in 

the second prototype. 

Besides the above, the Workbench is going to remain the tool for ingesting data from external sources, 

e.g., publications and ontologies.  

 
6 https://bioportal.bioontology.org/ontologies/ICD-O-3-T 
7 https://github.com/obi-bcgo/bcgo 
8 https://mondo.monarchinitiative.org/ 

https://examode.ontotext.com/
http://examode.ontotext.com/
https://bioportal.bioontology.org/ontologies/ICD-O-3-T
https://github.com/obi-bcgo/bcgo
https://mondo.monarchinitiative.org/


Visual graph 
The Visual graph, a dedicated GraphDB functionality for visualization, shows query results or specified 

object links in a way that allows at-a-glance view and better interpretation.  

When users select the Visual graph from the left pane of the Workbench, this will open a screen like in 

Figure 4. The options for how to work with it are the following: 

● Placing a link of an object, e.g., http://linkedlifedata.com/resource/umls/id/C0001432 in the  

Easy-graph field brings results as the ones shown on the Figure 5. 

  

http://linkedlifedata.com/resource/umls/id/C0001432


 

 

Figure 3 Class relationships 



 

 

 

Figure 4 Visual graph functionalities 



 

Figure 5 Links of a node 

 



 

●  Using the Advanced graph configurations where users can modify and run some pre-defined 

queries or write their own ones. See the following query as an example: 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX exa: <https://w3id.org/examode/> 
CONSTRUCT 
{ 
    ?case exa:hasDiagnosis ?diagnosis ; 
          exa:hasLocation ?location ; 
          exa:hasDysplasia ?displasia ; 
          exa:hasProcedure ?procedure ; 
          exa:hasTopography ?topography ; 
          exa:hasGender ?gender ; 
          exa:hasAge ?age  
} 
WHERE {  
 ?case rdf:type exa:ColonClinicalCaseReport ; 
       exa:hasOutcome ?outcome . 
    OPTIONAL{graph ?g{?outcome rdf:type ?diagnosis}} 
    OPTIONAL{?outcome exa:hasLocation ?location} 
    OPTIONAL{?outcome exa:hasDysplasia ?displasia} 
    OPTIONAL{graph ?g {?outcome exa:hasIntervention ?intervention . 
    ?intervention rdf:type ?procedure ; 
                  exa:hasTopography ?topography }} 
    OPTIONAL{?case exa:hasGender ?gender} 
    OPTIONAL{?case exa:hasAge ?age} 
} LIMIT 20 
 

The example query above results in a visualization such as in Figure 6. 

The UI allows users to rearrange the view by dragging nodes as well as to click on them to obtain 

additional information, which opens in a side pane. Users can also expand and collapse nodes that are 

objects (not literals) to see their links and explore them further.  

● The third option (Figure 4) is to explore already saved results from the first two options.  

We strongly recommend visiting the link https://examode.ontotext.com and playing with this 

functionality. 

In the first version of the prototype the Visual graph is used “as is” and some queries have been defined 

so they could be used as a template for search before visualization. The functionality for generating 

visual graph images is planned to be integrated with the user interface of the second/final prototype so 

that it is accessible to users in an easy and straightforward way.

https://examode.ontotext.com/


 

 

Figure 6  Query results visualization by visual graphs



Similarity search 
The business requirement addressed by the similarity search is that users may need more information 

about a specific clinical case and the probability of one outcome or another. They can check this either 

by exploring all cases and finding which are the most similar to theirs or by searching in the stored 

publications metadata. 

There are several challenges related to similarity: 

● How to use information that is as complete as possible? 

● How to define proper similarity metrics? 

● How to perform similarity search in the most effective and productive way? 

We address the first problem by combining all three data flows – images analysis and classification 

results metadata, the provided parts of EHR and the provided synopses. Each clinical case is represented 

as an object (node) in the knowledge graph and all the known data about it - as connections to this node. 

In this way, it becomes a part of the knowledge graph and, as it has more properties, it makes the 

information in the KG more interconnected and more easily accessed by search algorithms.  

When a node is connected to other nodes (semantic concepts) of an ontology and one follows its 

hierarchy and interconnection to other ontologies, its corresponding clinical case becomes connected to 

the other cases through their links to the same semantic categories. The most intuitive way to define 

when two nodes are most similar while inspecting their links is by counting the sum of common tokens 

and normalizing it by the number of tokens.  

There are a number of algorithms for text similarity and knowledge graph nodes similarity. In the first 

version of the SDKMS, we use the Predicate-based Semantic Indexing (PSI) as part of GraphDB. The PSI is 

an adoption of Random Indexing for application on knowledge graphs and, as a specific case of the 

Vector Symbolic Architecture (VSA) approach, it is a type of a vector space model. 

All vector space models assign vectors to the different elements of a glossary, e.g., to a set of words in a 

specific set of documents in a way that allows using vector operations to perform complex tasks such as 

calculating the similarity between documents. In the context of knowledge graphs, all the nodes and 

relations are terms and obtain their vector representations – indices. Different graphs, subgraphs, etc. 

are documents 

In particular, VSA algorithms assign vectors (indices) of high dimensions (10 000 and above) and define 

binding operators together with their inverse operators, also called release. Both the binding and the 

inverse map to the same vector space as the inverse could be not exact, but only approximate. However, 

in that case, even if the release doesn’t map to the exact origin vector, it must be the nearest of all 

possible results. If we denote the similarity operator with  ∙, the binding with ⊗ and the inverse with ∅, 

the following statements are true: 

● The binding of two vectors ab maps to a completely dissimilar vector: a   (ab)  0 and 

(ab) b0 

● (a (ab)) b  1 

The space dimension and the implementation of binding and release operators vary among the 

algorithms as well as calculating the similarity that is usually a vector distance function. 



The PSI as an adoption of Random Indexing algorithm has the following characteristics: 

1. For each node e and relation r from the knowledge graph, random vectors I(e) and I(r) are 

generated. They are both from the same vector space with a high dimension. 

2. For each node 𝑒0 a context vector is assigned: 

𝑆(𝑒0) = ∑𝑒∈𝐸,𝑟∈𝑅 𝑤(𝑒, 𝑟, 𝑒0)𝐼(𝑒)𝐼(𝑟),  

where 𝑤(𝑒, 𝑟, 𝑒0) is 1, if there is such triple(𝑒, 𝑟, 𝑒0) in the knowledge graph, and otherwise - 0. 

3. A similar approach is taken for the inverse relations r_inv (if any): 

𝑆(𝑒) = ∑𝑒∈𝐸,𝑟_𝑖𝑛𝑣∈𝑅 𝑤(𝑒0, 𝑟_𝑖𝑛𝑣, 𝑒)𝐼(𝑟_𝑖𝑛𝑣)𝐼(𝑒),  

where 𝑤(𝑒0, 𝑟_𝑖𝑛𝑣, 𝑒) is 1, if there is such triple (𝑒0, 𝑟_𝑖𝑛𝑣, 𝑒) in the knowledge graph, and 

otherwise - 0. 

 

Although all index vectors I(e) and I(r) are initialized randomly, the context vectors S(e) of objects embed 

information about their existence as an object in the knowledge graph triples. 

The above algorithm works only if the dimension of the vector space is large enough.  

The similarity between the two vectors a and b, a ∙b, is 1 minus the Humming distance between S(a) and 

S(b). 

The main benefits of using PSI for calculating similarities are the following: 

● As in all vector space models, the vector operations are quite fast on contemporary CPUs - as 

almost all of them have built-in vectorization functions, which is much faster than sequences of 

rule-based if-then-else logic.  

● The PSI doesn’t require any optimization or ML steps. The calculation of indices is 

straightforward and its cost is predictable. 

The main drawback of the PSI, which is common for all vector-space models, is that it is a closed system. 

One cannot estimate the similarity of a non-indexed entity to other indexed entities. However, the fast 

rebuilding of indices (for the current volume of the ExaMode project knowledge graph, it takes less than 

a minute on a regular desktop configuration) makes the frequent rebuild possible. 

It is also worth noting that the information can be added in batches and after that the index can be 

rebuilt before exploring new clinical cases. 

Similarity search example 
Let us visit the link https://examode.ontotext.com where  the instance of GraphDB with the loaded 

knowledge graph of the ExaMode project is. We need to select the repository 

(ColonCancerSimilaritySearch) and Explore ->Similarity on the left pane.  

There are two algorithms provided. The first one is for the textual index, which is the common Random 

Indexing, but works well only on rich text fields. The other one – the predicate index - is the PSI explained 

above. A list of already built indices appear and users are able to create their own.

https://examode.ontotext.com/


 

 

 

Figure 7  Creating a predication index 



Let us select Create New Index and then the tab Create predicate index. A screen as the one in Figure 7 

appears. 

Each index has two queries – a data query for extracting the triples, which will be indexed, and a search 

query, which defines the use of the index. In the above example, there is no filtering and all the triples in 

the knowledge graph will be included in the index. 

The search query could be as follows: 

PREFIX :<http://www.ontotext.com/graphdb/similarity/> 
PREFIX inst:<http://www.ontotext.com/graphdb/similarity/instance/> 
PREFIX psi:<http://www.ontotext.com/graphdb/similarity/psi/> 
 
PREFIX exa: <https://w3id.org/examode/> 
SELECT ?entity ?diagnosis ?procedure ?displasia ?procedure ?topography ?gender ?age ?score { 

?search a ?index ; 
  ?searchType ?query; 
  psi:searchPredicate ?psiPredicate; 

:searchParameters ?parameters; 
?resultType ?result . 

?result :value ?entity ; 
:score ?score . 

OPTIONAL{?entity exa:hasDiagnosis ?diagnosis } 
OPTIONAL{?entity exa:hasLocation ?location } 
OPTIONAL{?entity exa:hasDysplasia ?displasia } 
OPTIONAL{?entity exa:hasProcedure ?procedure } 
OPTIONAL{?entity exa:hasTopography ?topography } 
OPTIONAL{?entity exa:hasGender ?gender } 
OPTIONAL{?entity exa:hasAge ?age } 

} 
 

The result is retrieved with its url ?entity and similarity score ?score. Users can add fields to include more 

details in the result as shown in the OPTIONAL fields of the example above. To include similarity results 

with missing values for some of the properties, it is necessary to use OPTIONAL subquery clauses. 

To run the query, users must select the URI of an object and click the Show button. In the example 

below, this is https://w3id.org/examode/resource/report/19_3430 (See Figure 8). There, the similarity 

score is on the furthest column on the right. As one can see, the most similar case is the same as the one 

queried with similarity score approximately 1.0, as expected. 

The second result scores 0.616 and differs from the one in the query only by gender and age. The third 

result has a similarity score of about 0.58 and has the same property values as the first but two of them 

have not been provided. 

One can visit the site and perform other searches. The exact columns to be displayed are specified in the 

search query where users can also apply more complex criteria.

https://w3id.org/examode/resource/report/19_3430


 

 

Figure 8 Similarity search results



 

Big data aspects of the SDKMS (Conclusion) 
The SDKMS is a significant part of the ExaMode project as it is one of the two commercial software 

prototypes that will result from it. The project is in development under the EU Horizon-2020 call in Topic 

ICT-12 RIA in the field of Big Data technologies.  

ExaMode addresses exa-scale data from various sources - scientific literature and clinical research on 

histopathological images of human tissues samples relevant to different diseases where such an 

examination approach is applicable.  

There are two main complementary work streams. One is to use the huge collected volume of visual and 

textual data for training Machine Learning models to detect specific visual configurations (artefacts) in 

images as well as to extract the semantics from textual descriptions. The second is to develop prototypes 

that utilize these models and to provide histopathologists with the functionality to automate and 

prioritize their everyday activities, allowing them to examine higher volumes of samples with better 

accuracy and productivity. The prototypes will be implemented first in a hospital environment in Azienda 

Ospedaliera per l'Emergenza Cannizzaro hospital in Italy. 

The SDKMS will utilize the ML models trained within the scope of the project. It will feature the 

workflows of extracting semantics from textual input data (e.g., synopses) and will unite them with the 

outcomes of histopathological images analysis. Following this approach, a multi-modal semantic 

representation of each specific clinical case will be generated. Each case constitutes a knowledge graph, 

which is mapped to other well known ontologies in the health-care field like SNOMED CT, MONDO, etc. 

and uses data representation standards like HL7 and FHIR. This connects the clinical case related data to 

LOD sources in the world as well as to all case-relevant scientific and clinical research reports.  

The user of the system (a histopathologist) will be able to search for similarities and will receive 

information about the distribution of the specific case characteristics in the collected data as well as in 

the literature, which matches one of the specific requirements of ICT-12 RIA “new methods for extreme-

scale analytics, deep analysis, precise predictions and decision making support”. 

In addition to the above, the SDKMS will provide a novel tool for knowledge graph visualization in a 

scalable and user friendly way, which is relevant to the requirement “novel visualization techniques”. 

 



Appendix 1. List of abbreviations 
AI Artificial Intelligence 

EHR Electronic Health Record 

HIS Hospital Information System 

KG Knowledge Graph 

LIMS Laboratory Images Management System 

LOD Linked Open Data 

NLP Natural Language Processing  -a complex of algorithms and AI models for extracting 
semantic categories and meanings from free style text 

PSI Predicate-based Semantic Indexing 

RDF Resource Description Framework – standard for representation of semantic knowledge 

SDKMS Semantic Data Knowledge Management System – this software system and its versions 

UI User Interface 

VSA Vector Symbolic Architecture 

  

  

  

 


